SELECTIVE ANTIHERPETIC ACTIVITY OF CARBOCYCLIC ANALOGUES OF

(E)-5-(2-HALOGENOVINYL)-2'-DEOXYURIDINES:

DEPENDENCE ON SPECIFIC PHOSPHORYLATION BY VIRAL THYMIDINE KINASE

Erik De Clercq\*, Jan Balzarini, Ria Bernaerts, Piet Herdewijn and Alfons Verbruggen†

Rega Institute for Medical Research, and Laboratory of Nuclear Medicine and Radiopharmacy<sup>†</sup>, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

Received November 16, 1984

SUMMARY The carbocyclic analogues of (E)-5-(2-bromoviny1)-2'-deoxyuridine (C-BVDU) and (E)-5-(2-iodoviny1)-2'-deoxyuridine (C-IVDU), in which the sugar moiety is replaced by a cyclopentane ring, are as efficient substrates for the herpes simplex type 1 (HSV-1)-encoded thymidine kinase (TK) as their parent compounds (BVDU and IVDU). This conclusion is based on the binding affinities (Ki) of BVDU, IVDU, C-BVDU and C-IVDU to the HSV-1 TK and on the phosphorylation rates (Km,  $V_{max}$ ) of (1251) IVDU and (1251) C-IVDU by the enzyme. The specific phosphorylation of C-BVDU and C-IVDU by the viral TK may explain why these compounds are highly selective inhibitors of HSV-1 replication. © 1985 Academic Press, Inc.

BVDU and IVDU are among the most potent and most selective inhibitors of HSV-1 and VZV replication that have been described to date 1: i.e., they are 5-fold more potent against HSV-1 and 1000-fold more potent against VZV than the recently licensed antiviral drug, acyclovir. 2,3 The selectivity of BVDU and IVDU is attested by their low cytotoxicity: they do not interfere with normal host cell functions unless their concentrations are raised to 5,000-50,000 times the minimal antiviral concentration. 2,3

An untoward feature of BVDU and IVDU is that they are efficient substrates for pyrimidine nucleoside phosphorylases, i.e. dThd phosphorylase<sup>4</sup> and Urd phosphorylase, which cleave BVDU and IVDU at their N-glycosidic linkage, thereby releasing the free pyrimidine bases. As a consequence, BVDU is rapidly cleared from the plasma, within 2-3 hours after intraperitoneal administration to rats.<sup>5</sup>

<sup>\*</sup>Author to whom correspondence should be addressed at the Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.

Abbreviations: BVDU, (E)-5-(2-bromovinyl)-2'-deoxyuridine; IVDU, (E)-5-(2-iodovinyl)-2'-deoxyuridine; C-BVDU, carbocyclic BVDU; C-IVDU, carbocyclic IVDU; HSV-1, herpes simplex virus type 1; HSV-2, herpes simplex virus type 2; VZV, varicella-zoster virus; TK (deoxy) thymidine kinase; PBS, phosphate-buffered saline.

Fig. 1. Structural formulae of BVDU, IVDU, C-BVDU and C-IVDU.

To circumvent the problem of phosphorolytic cleavage of BVDU and IVDU, we have recently synthesized the carbocyclic analogues, C-BVDU and C-IVDU, in which the sugar moiety is replaced by a cyclopentane ring (Fig. 1).

C-BVDU and C-IVDU are completely resistant to phosphorolytic cleavage by dThd phosphorylase and Urd phosphorylase. Furthermore, C-BVDU and C-IVDU are, like their parent compounds BVDU and IVDU, highly potent and selective inhibitors of HSV-1 replication in cell culture.

The selectivity of BVDU and IVDU as antiherpes agents depends to a large extent on a specific phosphorylation by the virus-encoded (deoxy)thy-midine kinase (TK). BVDU and IVDU, as well as several other selective antiherpes agents, have a much greater affinity for HSV-1 TK than for cellular (cytosol) TK; 8,9 and this explains why BVDU and IVDU are preferentially phosphorylated by HSV-1-infected cells. 10

In the present study we addressed the question whether the selective antiherpetic action of C-BVDU and C-IVDU may also be explained by a specific interaction with the viral TK. Such an interaction would have implications from a fundamental molecular-biological viewpoint, because it would mean that a nucleoside analogue containing a cyclopentane ring instead of the usual pentose moiety could act as substrate in an enzymatic reaction that would allow it to be metabolized by the cell.

## MATERIALS AND METHODS

Compounds. BVDU and IVDU were synthesized by R. Busson and H. Vanderhaeghe (Rega Institute, Katholieke Universiteit Leuven, Belgium), following a method similar to that of Jones et al.  $^{1}$  C-BVDU and C-IVDU were synthesized as described by Herdewijn et al.  $^{6}$  (Methyl- $^{3}$ H) dThd (specific radioactivity: 52 Ci/mmol) and  $\frac{(2-14\text{C})}{\text{dThd}}$  (specific radioactivity: 50-60 mCi/mmol) were obtained from Amersham International Limited (Amersham, England).

Synthesis of  $(^{125}I)IVDU$ .  $(^{125}I)NaI$  (Amersham) (2.5 mCi in 25  $\mu l$  of 0.05 N NaOH) was added to a solution of 0.5 mg IVDU and 2  $\mu$ mol HCl in 0.15

ml ethanol. The mixture was heated in a sealed tube at  $130^{\circ}\text{C}$  for 15 min. After cooling,  $(^{125}\text{I})$  IVDU was isolated from other reaction products by HPLC on a short-alkyl reversed phase ( $^{\circ}\text{C}_2$ ) column (250 mm x 10 mm i.d.). The HPLC apparatus was equipped with both a U.V. detector (Waters Associates, model 440) connected to a chart recorder and a 2"  $(^{125}\text{I})$ NaI radiation detector coupled to a multichannel analyzer (Canberra series 40). The column was eluted in an isocratic fashion at 3 ml/min with methanol-water (5:95). The eluate fraction containing  $(^{125}\text{I})$  IVDU (eluting time: 20-26 min) was collected, and the solvent was removed by lyophilization. The residue was taken up in PBS to yield 2 mCi  $(^{125}\text{I})$  IVDU with a specific radioactivity of 1.89 Ci/mmol.

Synthesis of (1251)C-IVDU. (1251)NaI (Amersham) (1.5 mCi in 15  $\mu 1$  of 0.05 N NaOH) was added to a solution of 0.2 mg C-IVDU and 1  $\mu$ mol HCl in 60  $\mu 1$  ethanol. The mixture was heated in a sealed tube at 130°C for 15 min. After cooling, (1251)C-IVDU was isolated from other reaction products by HPLC on a short-alkyl RP2 column (250 mm x 10 mm i.d.). The HPLC apparatus was equipped as described above. The column was eluted in an isocratic fashion at 3 ml/min with dioxane-water (20:80). The eluate fraction containing (1251)C-IVDU (eluting time: 8.5-11 min) was collected and evaporated to dryness at reduced pressure (0.1 mm Hg) at 10°C. The residue was taken up in PBS to yield 1.25 mCi (1251)C-IVDU with a specific radioactivity of 2.35 Ci/mmol.

Antiviral assays. The procedure for measuring inhibition of virus-induced cytopathogenicity (in primary rabbit kidney cells) as well as the sources of the virus strains have been described previously.<sup>2</sup>

Preparation of HSV-1 TK. Primary rabbit kidney cells were seeded in 75 cm² tissue culture flasks (Sterilin, Teddington, Middlesex, England) in Eagle's minimum essential medium supplemented with 10 % (v/v) inactivated fetal calf serum (Gibco Bio-Cult, Glasgow, Scotland), 2 mM L-glutamine (Flow Laboratories, Irvine, Scotland) and 0.075 % (w/v) NaHCO3. When 90 % confluent, the cell monolayers were infected with HSV-1 (strain KOS) at a multiplicity of  $10^6 \cdot 5$  CCID $_{50}$  (cell culture 50 % infective doses)/ml/culture. After 1-hour virus adsorption, the cells were further incubated in cell culture medium for 14 hours. At that time viral cytopathogenicity reached 50-75 %. The cell cultures were then washed 4 times with 50 mM Tris-HCl, pH 8.0, containing 0.9 % NaCl and frozen at -20°C. After thawing, the cells were treated with 0.1 M Tris-HCl, pH 8.0, containing 20 mM  $\beta$ -mercaptoethanol. Following sonication (2 times, 10 sec), the cell homogenate was cleared by centrifugation for 30 min at 70,000 g and the supernatant was stored at -20°C until used as source of HSV-1 TK.

Determination of inhibition constants (Ki). Ki values of BVDU, IVDU, C-BVDU and C-IVDU for HSV-1 TK were determined as described by Cheng and Ostrander.  $^{12}$  In these experiments  $(2^{-14}C)$  dThd served as the radiolabelled substrate.

Determination of phosphorylation rates. Km and  $V_{max}$  values were determined for HSV-1 TK with (methyl-3H)dThd, (1251)IVDU or (1251)C-IVDU as the radiolabelled substrate. The standard assay mixture contained 5 mM ATP, 5 mM MgCl2.6 H20, 9 mM KF, 5 mM phosphoenolpyruvate, 5 µg pyruvate kinase, 10 mM  $\beta$ -mercaptoethanol, varying concentrations (100, 50, 25, 12.5 and 6.25  $\mu$ M) of the radiolabelled substrate (100  $\mu$ M corresponding to 0.2  $\mu$ Ci for (methyl-3H)dThd, 0.34  $\mu$ Ci for (1251)IVDU and 0.67  $\mu$ Ci for (1251)-C-IVDU, respectively) and 10  $\mu$ l enzyme extract in a total volume of 40  $\mu$ l 50 mM Tris-HCl, pH 8.0. The assay mixture was incubated at 37°C for 15 min. and the reaction was terminated by the addition of 75  $\mu$ l ice-cold 50 mM Tris-HCl, pH 8.0. After boiling for 90 sec., the assay mixture was applied onto DE81 discs and washed successively with 1 mM NH400CH, pH 8.2, ethanol and ether. The discs were then evaluated for radioactivity in a toluene-based scintillant.

#### RESULTS

The carbocyclic analogues C-BVDU and C-IVDU were almost as active as their riboside counterparts BVDU and IVDU in inhibiting the replication of HSV-1 in primary rabbit kidney cells (Table I). Like their parent compounds, C-BVDU and C-IVDU were only inhibitory to HSV-2 at a concentration 100- to 300-fold higher than that required to inhibit HSV-1 replication. C-BVDU and C-IVDU were totally inactive against a TK-deficient (TK) variant of HSV-1, and also inactive against vaccinia, a virus that is known to code for a TK with a substrate specificity different from that induced by HSV-1. The latter findings suggested that C-BVDU and C-IVDU owed their selective activity against HSV-1 to a specific interaction with and phosphorylation by the HSV-1-encoded TK.

That C-BVDU and C-IVDU specifically interfered with HSV-1 TK was ascertained by measuring the cell-free enzyme kinetics with varying concentrations of  $(2^{-14}C)$  dThd as substrate and varying concentrations of C-BVDU, C-IVDU, BVDU or IVDU as inhibitor. As shown in Fig. 2, C-BVDU and C-IVDU proved equally effective in inhibiting HSV-1 TK activity as their parent compounds BVDU and IVDU, and all four nucleoside analogues behaved as competitive inhibitors with respect to  $(2^{-14}C)$  dThd phosphorylation. The Km of HSV-1 TK for  $(2^{-14}C)$  dThd in these assays was 6.25  $\mu$ M and the Ki/Km ratios were as follows: 1.52 for BVDU, 0.91 for C-BVDU, 1.03 for IVDU and 0.64 for C-IVDU. On the assumption that Ki/Km ratios reflect binding affinity, these data suggested that C-BVDU and C-IVDU had at least as great an affinity for HSV-1 TK as their riboside counterparts BVDU and IVDU.

The rates of phosphorylation by HSV-1 TK were then measured with  $\binom{125}{1}$ C-IVDU or  $\binom{125}{1}$ IVDU as radiolabelled substrate. As demonstrated by the respective Km and V values (Table II),  $\binom{125}{1}$ C-IVDU was as efficient, if not more efficient, as substrate for HSV-1 TK than either  $\binom{125}{1}$ -

| Table I. | Antiviral | activity | of the | carbocyclic | analogues | οf | BVDU | and | IADA |
|----------|-----------|----------|--------|-------------|-----------|----|------|-----|------|
|          | in        | primary  | rabbit | kidney cell | cultures  |    |      |     |      |

| Compound | міс <sub>50</sub> ** (µМ) |                |          |                |  |  |  |
|----------|---------------------------|----------------|----------|----------------|--|--|--|
|          | HSV-1                     | H <b>SV-</b> 2 | TK HSV-1 | Vaccinia virus |  |  |  |
| C-BVDU   | 0.15                      | 45             | > 1200   | 900            |  |  |  |
| C-IVDU   | 0.21                      | 26             | > 1050   | 780            |  |  |  |
| BVDU     | 0.03                      | 6              | 300      | 21             |  |  |  |
| IVDU     | 0.026                     | 5.3            | 263      | 18             |  |  |  |

<sup>\*</sup>Minimum inhibitory concentration required to reduce virus-induced cytopathogenicity by 50 %: average values for three HSV-1 strains (KOS, F, McIntyre), two HSV-2 strains (Lyons, G) and one TK- HSV-1 strain (B2006).

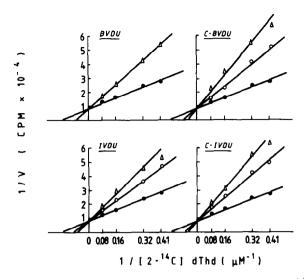



Fig. 2. Lineweaver-Burk plots for HSV-1 TK activity (with  $(2^{-14}C)$  dThd as substrate) in the presence of BVDU, C-BVDU, IVDU or C-IVDU at a final concentration of 0 μM (•), 5.55 μM (0) or 11.1 μM (Δ).

IVDU or  $(methy1-^3H)dThd$ , and its  $V_{max}$  was even 2-fold higher than that for  $(methy1-^3H)dThd$ .

Additional experiments have indicated that  $\binom{125}{1}$ C-IVDU is not a substrate for cellular TK (data not shown). While most of the radioactivity recovered from HSV-1-infected cells exposed for varying times (i.e. 6, 12 or 24 hours) to  $\binom{125}{1}$ C-IVDU was identified as  $\binom{125}{1}$ C-IVDUMP, not even a trace of  $\binom{125}{1}$ C-IVDUMP could be detected in uninfected cells exposed to  $\binom{125}{1}$ C-IVDU. From these cells only intact  $\binom{125}{1}$ C-IVDU could be recovered, suggesting that it was not phosphorylated by host cell TK.

### DISCUSSION

Our findings indicate that the carbocyclic analogues of BVDU and IVDU are recognized as substrate by the HSV-1 encoded TK, and that, consequently, C-BVDU and C-IVDU may be metabolized (i.e. phosphorylated) in HSV-1

Table II. Phosphorylation rates of dThd, IVDU and C-IVDU by HSV-1 TK

| Parameter |                        |  |  |  |  |
|-----------|------------------------|--|--|--|--|
| Km (µM)   | V (nmol/mg protein/hou |  |  |  |  |
| 4.84      | 142                    |  |  |  |  |
| 5.58      | 178                    |  |  |  |  |
| 3.15      | 298                    |  |  |  |  |
|           | 4.84<br>5.58           |  |  |  |  |

infected cells. Uninfected cells would be unable to phosphorylate these carbocyclic analogues.

Carbocyclic analogues of 5-substituted 2'-deoxyuridines such as 5fluoro- and 5-iodo-2'-deoxyuridine have been the subject of previous studies. 13,14 The carbocyclic analogue of 5-fluoro-2'-deoxyuridine was inactive against HSV-1, but the carbocyclic 5-iodo-2'-deoxyuridine proved as active against HSV-1 as 5-iodo-dUrd itself. Carbocyclic 5-iodo-dUrd did not show any activity against TK HSV-1, and while this finding 14 suggested that carbocyclic uracil nucleosides must be activated by the virusinduced TK to be effective against HSV-1, no direct evidence was offered for this activation process. The present study demonstrates that carbocyclic 2'-deoxyuridines, i.e. C-BVDU and C-IVDU, are indeed phosphorylated by the HSV-1 TK, and this virus-specific mechanism of activation may be the prime reason for the high degree of antiviral selectivity of C-BVDU and C-IVDU.

Previous studies have demonstrated that the high affinity of BVDU for the HSV-1 induced TK is not substantially altered upon substitution of the 2-deoxyribofuranosyl moiety of BVDU by β-D-arabinofuranosyl, 2-deoxy-2fluoro-β-D-arabinofuranosyl, 2,3-dideoxy-3-chlororibofuranosyl or 2,3-dideoxy-3-aminoribofuranosy1.9,15 As shown here, BVDU analogues in which the 2-deoxyribofuranosyl moiety is replaced by a non-sugar, i.e. a cycloalkane (cyclopentane), are also able to act as substrate of HSV-1 TK.

This, in turn, indicates that such cyclopentyl pyrimidine derivatives can be metabolized by the HSV-1-infected cell. It would now seem imperative to follow the fate of these derivatives within the virus-infected cell, to examine whether they are phosphorylated to the 5'-triphosphate stage, and, if so, to determine whether they are incorporated into viral DNA or cellular DNA, or both.

#### ACKNOWLEDGMENTS

This research was supported by Krediet no. 3.0040.83 of the Belgian F.G.W.O. (Fonds voor Geneeskundig Wetenschappelijk Onderzoek) and Conventie no. 81/86-27 of the Belgian G.O.A. (Geconcerteerde Onderzoeksacties). The authors thank C. Julien, Miette Stuyck, Anita Van Lierde for their excellent technical assistance and Christiane Callebaut for her fine editorial help.

# REFERENCES

- 1. De Clercq, E., Descamps, J., De Somer, P., Barr, P.J., Jones, A.S., and Walker, R.T. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2947-2951.
- 2. De Clercq, E., Descamps, J., Verhelst, G., Walker, R.T., Jones, A.S.,
- Torrence, P.F., and Shugar, D. (1980) J. Infect. Dis. 141, 563-574.

  3. Shigeta, S., Yokota, T., Iwabuchi, T., Baba, M., Konno, K., Ogata, M., and De Clercq, E. (1983) J. Infect. Dis. 147, 576-584.

- Desgranges, C., Razaka, G., Rabaud, M., Bricaud, H., Balzarini, J., and De Clercq, E. (1983) Biochem. Pharmacol. 32, 3583-3590.
- Desgranges, C., Razaka, G., Drouillet, F., Bricaud, H., Herdewijn, P., and De Clercq, E. (1984) Nucleic Acids Res. 12, 2081-2090.
- Herdewijn, P., De Clercq, E., Balzarini, J., and Vanderhaeghe, H. (1985) J. Med. Chem., in press.
- De Clercq, E., Desgranges, C., Herdewijn, P., Sim, I.S., and Walker, R.T. (1984) In: Proceedings of the VIIIth International Symposium on Medicinal Chemistry. Ed. Nilsson, J.L.G., and Dahlbom, R. Swedish Pharmaceutical Press, in press.
- 8. Cheng, Y.-C., Dutschman, G., De Clercq, E., Jones, A.S., Rahim, S.G., Verhelst, G., and Walker, R.T. (1981) Mol. Pharmacol. 20, 230-233.
- 9. Cheng, Y.-C., Dutschman, G., Fox, J.J., Watanabe, K.A., and Machida, H. (1981) Antimicrob. Agents Chemother. 20, 420-423.
- 10. Descamps, J., and De Clercq, E. (1981) J. Biol. Chem. 256, 5973-5976.
- Jones, A.S., Verhelst, G., and Walker, R.T. (1979) Tetrahedron Lett., 4415-4418.
- 12. Cheng, Y.-C., and Ostrander, M. (1976) J. Biol. Chem. 251, 2605-2610.
- Shealy, Y.F., Frye, J.L., DuBois, N.F., Shaddix, S.C., and Brockman, R.W. (1981) J. Med. Chem. 24, 1083-1086.
- Shealy, Y.F., O'Dell, C.A., Shannon, W.M., and Arnett, G. (1983)
   J. Med. Chem. 26, 156-161.
- Zou, F.C., Dutschman, G.E., De Clercq, E., and Cheng, Y.-C. (1984)
   Biochem. Pharmacol. 33, 1797-1800.